
Digital Design and Computer Architecture
MiMi— Minimal MIPS

Institute of Computer Engineering
Vienna University of Technology

{rnajvirt, tpolzer, lechner}@ecs.tuwien.ac.at

December 2, 2013

1. Introduction

This document describes MiMi, a minimal MIPS implementation. It is mostly binary compatible with the
original MIPS implementation, as described in the seminal Computer Architecture: A Quantitative Approach
[1] and Computer Organization and Design [2]. However, only a subset of the instruction set is implemented.
Also, the design is a Harvard architecture, which entails that exception and interrupt handling is slightly
different than in the original MIPS implementation.

Figure 1 shows the 5-stage pipeline of the processor to be implemented. It comprises five stages: fetch,
decode, execute, memory and write-back. The data path is drawn in black; signals that flush a pipeline stage
are blue, signals that stall the pipeline are green, and signals that refer to exceptions are red. In the upcoming
assignments, the parts to be implemented will be shown in light blue and entities to be instantiated will be
shaded, to ease your navigation through the design.

Section 2 describes the implementation of the basic elements of the pipeline, such as the ALU and the
register file. These elements are put together to form a pipeline in Section 3; Section 4 describes how hazards
in the pipeline are to be resolved. Exception and interrupt handling is covered in Section 5.

P
C

4

regfileimem

decode

m
u

lt
ip

le
x

A
L

U

jmpu

memu

ctrl

fwd

Figure 1: MiMi pipeline

1

The questions in the Theory sections do not need to be answered in order to achieve points for the practical
part. However, they may be among the theoretical questions in the final exam.

2

Contents

1. Introduction 1

2. Level 0: Basic Elements 5
2.1. ALU . 6
2.2. Jump Unit . 8
2.3. Memory Unit . 9
2.4. Register File . 13

3. Level 1: Pipeline 14
3.1. Fetch . 15
3.2. Decode . 16
3.3. Execute . 20
3.4. Memory . 22
3.5. Write-Back . 24
3.6. Pipeline . 25

4. Level 2: Hazards 26
4.1. Forwarding . 27
4.2. Branch Hazards . 28
4.3. Integration . 29

5. Level 3: Exceptions and Interrupts 30
5.1. Coprocessor 0 . 31
5.2. General Operation . 32
5.3. Decode Exception . 32
5.4. Overflow Exception . 32
5.5. Memory Exception . 32
5.6. Interrupts . 32

A. Tools 33

B. Automated Test Environment 34

C. Submission Requirements 34
C.1. Exercise IV . 34
C.2. Exercise V . 34

3

List of Tables

1. ALU interface . 7
2. ALU result computation . 7
3. ALU zero-flag computation . 7
4. ALU overflow conditions . 7
5. Jump Unit interface . 8
6. Jump Unit operations . 8
7. Memory Unit interface . 9
8. MEM_OP_TYPE fields . 10
9. MEM_OUT_TYPE fields . 10
10. Computation of M.byteena and M.wrdata, W = DCBA . 10
11. Computation of R, D = DCBA . 11
12. Memory load exception computation . 11
13. Memory store exception computation . 12
14. Register file interface . 13
15. Fetch stage interface . 15
16. Decode stage interface . 16
17. EXEC_OP_TYPE fields . 17
18. COP0_OP_TYPE fields . 17
19. WB_OP_TYPE fields . 17
20. MiMi instructions . 18
21. MiMi special instructions . 19
22. MiMi regimm instructions . 19
23. MiMi cop0 instructions . 19
24. Execute stage interface . 21
25. Memory stage interface . 23
26. Write-back stage interface . 24
27. Pipeline interface . 25
28. Level 3 Assignments . 30
29. Coprocessor 0 registers . 31
30. Exception codes . 31

List of Figures

1. MiMi pipeline . 1
2. Instruction formats . 17
3. cause register . 31
4. status register . 31

Listings

1. Assembler example without forwarding . 25
2. Assembler example with forwarding . 27
3. Assembler example with branch delay slot . 28
4. Makefile fragment . 33

4

2. Level 0: Basic Elements

This assignment consists of four relatively simple hardware units. Implement the units described in this section,
and write appropriate test benches. Test the units thoroughly, as errors introduced at this stage might be very
difficult to find in later stages.

Points 4

Evaluation

The assignment will be evaluated with test benches, which thoroughly test the individual components. Points
will be granted if the test benches are passed successfully. The assignment is part of lab exercise IV.

5

2.1. ALU

File alu.vhd

P
C

4

regfileimem

decode

m
u
lt
ip

le
x

A
L
U

jmpu

memu

ctrl

fwd

Description

The arithmetic logic unit (ALU) carries out – as it name suggests – arithmetic and logic operations. The
interface of the ALU is described by Table 1; it shall implement the operations described in Table 2. The
computation of the zero flag Z and the overflow flag V is shown in Tables 3 and 4, respectively. Note that the
shift operations can be implemented conveniently with the functions shift_left() and shift_right from
the package numeric_std.

Theory

A general comparison between two values for less-than/greater-than requires a subtraction and an appropriate
evaluation of the most significant bits of the result. How many logic elements does the critical path for a
comparison of two n-bit values contain asymptotically (i.e., O(n2), O(n), O(logn), . . .)? What about comparing
for equality/inequality? Why is a comparison for less-than-zero cheap when using a two’s complement
representation?

6

Signal Direction Type Width Description

op in ALU_OP_TYPE – Operation
A in std_logic_vector DATA_WIDTH Operand A
B in std_logic_vector DATA_WIDTH Operand B
R out std_logic_vector DATA_WIDTH Result
Z out std_logic – Zero flag
V out std_logic – Overflow flag

Table 1: ALU interface

op R

ALU_NOP A
ALU_LUI B sll 16
ALU_SLT A < B ? 1 : 0, signed
ALU_SLTU A < B ? 1 : 0, unsigned
ALU_SLL B sll A(DATA_WIDTH_BITS-1 downto 0)
ALU_SRL B srl A(DATA_WIDTH_BITS-1 downto 0)
ALU_SRA B sra A(DATA_WIDTH_BITS-1 downto 0)
ALU_ADD A + B
ALU_SUB A - B
ALU_AND A and B
ALU_OR A or B
ALU_XOR A xor B
ALU_NOR not (A or B)

Table 2: ALU result computation

op Z

ALU_SUB if A = B then Z <= ’1’; else Z <= ’0’; end if;
otherwise if A = 0 then Z <= ’1’; else Z <= ’0’; end if;

Table 3: ALU zero-flag computation

op A B R V

ALU_ADD ≥ 0 ≥ 0 < 0 ’1’
ALU_ADD < 0 < 0 ≥ 0 ’1’
ALU_SUB ≥ 0 < 0 < 0 ’1’
ALU_SUB < 0 ≥ 0 ≥ 0 ’1’

otherwise ’0’

Table 4: ALU overflow conditions

7

2.2. Jump Unit

File jmpu.vhd

P
C

4

regfileimem

decode

m
u
lt
ip

le
x

A
L
U

jmpu

memu

ctrl

fwd

Description

The interface of the jump unit is shown in Table 5. It shall implement the operations shown in Table 6. The
zero flag Z corresponds to the zero flag of the ALU, while the negative flag N corresponds to a negative result
from the ALU.

Theory

Table 6 does not contain operations for all boolean combinations of N and Z. Would an operation for N and Z
make sense? If so, what would be the high-level comparison? If not, explain why.

Signal Direction Type Description

op in JMP_OP_TYPE Operation
N in std_logic Negative flag
Z in std_logic Zero flag
J out std_logic Jump

Table 5: Jump Unit interface

Operation J

JMP_NOP ’0’
JMP_JMP ’1’
JMP_BEQ Z
JMP_BNE not Z
JMP_BLEZ N or Z
JMP_BGTZ not (N or Z)
JMP_BLTZ N
JMP_BGEZ not N

Table 6: Jump Unit operations

8

2.3. Memory Unit

File memu.vhd

P
C

4

regfileimem

decode

m
u
lt
ip

le
x

A
L
U

jmpu

memu

ctrl

fwd

Description

The memory unit is responsible for issuing memory access commands to the external interface. As the external
interface is word-based, the memory unit must translate sub-word accesses. The interface of the memory
unit is described in Table 7. MEM_OP_TYPE and MEM_OUT_TYPE are record types; their fields are described in
Tables 8 and 9. The value of M.address is A; other outputs must be set as described below.

Table 10 shows how M.byteena and M.wrdata are computed. In that table, it is assumed that W consists of
four bytes DCBA, with D being the most significant byte and A the least significant. A value AXXX in the last
column states that the most significant M.wrdata is the least significant byte from W, and other bytes being are
irrelevant and may contain arbitrary values.

How values from the external interface are translated is shown in Table 11. In that table, it is assumed that D
consists of four bytes DCBA, with D being the most significant byte and A the least significant. Furthermore, 0
signifies that the byte is set to zero, and S that the value is sign-extended. For example, the value SSSD means R
is the sign-extended most significant byte of D.

Tables 12 and 13 show how the load exception signal XL and the store exception signal XS are computed.
Note that usually M.rd is assigned the value of op.memread, and M.wr the value of op.memwrite. However, if
XL or XS are asserted, M.rd and M.wr must be zero, i.e., the processor must not issue a memory access that
raises an exception.

Theory

The memory unit uses big-endian addressing, where the most significant byte of a word is stored at the lowest
address. After storing the word 0x12345678 at address 4, what value should be returned when loading a byte
from address 5? Which value should be returned for the half-word at address 6?

Signal Direction Type Width Description

op in MEM_OP_TYPE – Access type
A in std_logic_vector ADDR_WIDTH Address
W in std_logic_vector DATA_WIDTH Write data
D in std_logic_vector DATA_WIDTH Data from memory
M out MEM_OUT_TYPE – Interface to memory
R out std_logic_vector DATA_WIDTH Result of memory load
XL out std_logic – Load exception
XS out std_logic – Store exception

Table 7: Memory Unit interface

9

Field Type Description

memread std_logic Read from memory
memwrite std_logic Write to memory
memtype MEMTYPE_TYPE Word, half-word or byte access

Table 8: MEM_OP_TYPE fields

Field Type Width Description

address std_logic_vector ADDR_WIDTH Address to read from or write to
rd std_logic – Asserted for reads
wr std_logic – Asserted for writes
byteena std_logic_vector 4 Byte-enable signal for sub-word writes
wrdata std_logic_vector DATA_WIDTH Data to be written

Table 9: MEM_OUT_TYPE fields

Operation A(1 downto 0) M.byteena M.wrdata

MEM_B | MEM_BU "00" "1000" AXXX
"01" "0100" XAXX
"10" "0010" XXAX
"11" "0001" XXXA

MEM_H | MEM_HU "00" "1100" BAXX
"01" "1100" BAXX
"10" "0011" XXBA
"11" "0011" XXBA

MEM_W "00" "1111" DCBA
"01" "1111" DCBA
"10" "1111" DCBA
"11" "1111" DCBA

Table 10: Computation of M.byteena and M.wrdata, W = DCBA

10

Operation A(1 downto 0) R

MEM_B "00" SSSD
"01" SSSC
"10" SSSB
"11" SSSA

MEM_BU "00" 000D
"01" 000C
"10" 000B
"11" 000A

MEM_H "00" SSDC
"01" SSDC
"10" SSBA
"11" SSBA

MEM_HU "00" 00DC
"01" 00DC
"10" 00BA
"11" 00BA

MEM_W "00" DCBA
"01" DCBA
"10" DCBA
"11" DCBA

Table 11: Computation of R, D = DCBA

op.memread op.memtype A(1 downto 0) A(ADDR_WIDTH-1 downto 2) XL

’1’ – "00" (others => ’0’) ’1’
’1’ MEM_H "01" – ’1’
’1’ MEM_H "11" – ’1’
’1’ MEM_HU "01" – ’1’
’1’ MEM_HU "11" – ’1’
’1’ MEM_W "01" – ’1’
’1’ MEM_W "10" – ’1’
’1’ MEM_W "11" – ’1’

otherwise ’0’

Table 12: Memory load exception computation

11

op.memwrite op.memtype A(1 downto 0) A(ADDR_WIDTH-1 downto 2) XS

’1’ – "00" (others => ’0’) ’1’
’1’ MEM_H "01" – ’1’
’1’ MEM_H "11" – ’1’
’1’ MEM_HU "01" – ’1’
’1’ MEM_HU "11" – ’1’
’1’ MEM_W "01" – ’1’
’1’ MEM_W "10" – ’1’
’1’ MEM_W "11" – ’1’

otherwise ’0’

Table 13: Memory store exception computation

12

2.4. Register File

File regfile.vhd

P
C

4

regfileimem

decode

m
u
lt
ip

le
x

A
L
U

jmpu

memu

ctrl

fwd

Description

The register file is a memory with two read ports and one write port, with 2**REG_BITS words that are
DATA_WIDTH bits wide. The clock signal clk has the usual meaning and causes the circuit to latch the read
and write addresses. The reset signal reset is active low and resets internal registers, but not necessarily the
contents of the register file. The signal stall causes the circuit not to latch input values such that old values
are kept in all registers. Reads from address 0 must always return 0, which may be achieved by an appropriate
power-up value and ignoring writes to that location or by intercepting reads from that location. When reading
from a register that is written in the same cycle, the new value shall be returned.

In the original MIPS implementation, reads took place on positive clock edges, while writes were performed
on negative clock edges in order to forward new values through the register file. However, using both clock
edges does not work in the FPGAs used in this lab course. Therefore, the required behavior has to be
implemented differently: If the internal register for a read address matches wraddr and regwrite = ’1’, the
register file shall return wrdata.

Theory

Given memory blocks with one write- and one read-port, how can a memory with one write- and two read-ports
be implemented efficiently? What is the overhead, compared to a memory with one write- and one read-port?

Signal Direction Type Width

clk in std_logic –
reset in std_logic –
stall in std_logic –
rdaddr1 in std_logic_vector REG_BITS
rdaddr2 in std_logic_vector REG_BITS
wraddr in std_logic_vector REG_BITS
wrdata in std_logic_vector DATA_WIDTH
regwrite in std_logic –
rddata1 out std_logic_vector DATA_WIDTH
rddata2 out std_logic_vector DATA_WIDTH

Table 14: Register file interface

13

3. Level 1: Pipeline

In this assignment, the first version of the pipeline shall be implemented. The pipeline shall be able to execute
code, though without resolving any hazards in the pipeline. This means that the results of operations are not
available until two cycles later, and that branches have three-cycle branch delay slots.

The pipeline is a classic 5-stage pipeline, consisting of fetch, decode, execute, memory, and write-back
stages.

Points 5

Evaluation

The assignment will be tested with test benches, which check the correctness of the behavior at the memory
interface for a given content of the instruction memory. Note that this means that testing is only possible if
memory operations are implemented. Points will be granted if the design passes the test suites. The assignment
is part of lab exercise IV.

14

3.1. Fetch

File fetch.vhd

P
C

4

regfileimem

decode

m
u
lt
ip

le
x

A
L
U

jmpu

memu

ctrl

fwd

Description

In the fetch stage, the instruction memory is read, and the next value of the program counter is computed.
The instruction memory is located within this pipeline stage. Table 15 shows the interface of the fetch stage.
clk and reset have their usual meaning, reset is active low. After a reset, the fetch stage shall return the
instruction located at address 0 in the instruction memory. stall causes the fetch stage not to change internal
registers, i.e., the program counter must not change while stall is asserted. Otherwise, if pcsrc is asserted,
the next program counter shall be pc_in, if pcsrc is zero, it shall be the current program counter incremented
by 4.

Note that the read port of the instruction memory is registered, which entails that it must be connected to
the next program counter in order to output the instruction that corresponds to the current program counter
register. The next program counter is also passed on to the decode stage (see Figure 1). Therefore, the program
counter in the decode stage does not match the address of the instruction to be decoded, but is usually already
incremented by 4. Furthermore, the program counter holds a byte address, while the instruction memory is
word-addressed. The lowest two bits of the program counter—which are always zero anyways—are therefore
not used to address the instruction memory.

Theory

Sketch a fetch stage with variable-length instructions, where the value for the next program counter depends
on the instruction that is currently fetched. Which sub-components would be on the critical path in such a
fetch stage?

Signal Dir. Type Width Description

clk in std_logic – Clock
reset in std_logic – Reset
stall in std_logic – Stall
pcsrc in std_logic – Use pc_in or incremented program counter as

new program counter
pc_in in std_logic_vector PC_WIDTH New program counter
pc_out out std_logic_vector PC_WIDTH Current program counter
instr out std_logic_vector INSTR_WIDTH Fetched instruction

Table 15: Fetch stage interface

15

3.2. Decode

File decode.vhd

P
C

4

regfileimem

decode

m
u
lt
ip

le
x

A
L
U

jmpu

memu

ctrl

fwd

Description

The decode stage contains the register file and translates the raw instructions to signals that are used subse-
quently in the pipeline. More than one instruction may be mapped to an operation of a function unit such as
the ALU. For example, addition of two registers, of a register and an immediate and memory accesses are
all mapped to the ALU instruction ALU_ADD. Table 16 shows the interface of the decode stage. We provide
definitions for the types EXEC_OP_TYPE, COP0_OP_TYPE, JMP_OP_TYPE, MEM_OP_TYPE, and WB_OP_TYPE. You
are however free to modify these types in order to optimize your design. The definitions for JMP_OP_TYPE and
MEM_OP_TYPE are provided in Tables 6 and 8, respectively. EXEC_OP_TYPE, COP0_OP_TYPE and WB_OP_TYPE
are described in Tables 17, 18 and 19.

The signals clk and reset have their usual meaning, reset is active low. Asserting stall causes the stage
not to latch inputs into its internal registers; asserting flush causes the unit to store a no-op (all bits cleared) to
its internal instruction register.

Figure 2 shows the MIPS instruction formats. The operations that the processor must support are shown
in Tables 20, 21, 22 and 23. The operation semantics in these tables are given in C-syntax. The decoding
exception signal exc_dec shall be asserted if an instruction cannot be found in one of these tables. As the
coprocessor 0 is not implemented at this level, the instructions in Table 23 may be treated as no-ops.

Signal Dir. Type Width Description

clk in std_logic – Clock
reset in std_logic – Reset
stall in std_logic – Stall
flush in std_logic – Flush
pc_in in std_logic_vector PC_WIDTH Program counter from fetch stage
instr in std_logic_vector INSTR_WIDTH Instruction to be decoded
wraddr in std_logic_vector REG_BITS Address for writes to register file
wrdata in std_logic_vector DATA_WIDTH Data for writes to register file
regwrite in std_logic – Enable write to register file
pc_out out std_logic_vector PC_WIDTH Program counter for subsequent stages
exec_op out EXEC_OP_TYPE – Operation for execute stage
cop0_op out COP0_OP_TYPE – Operation for coprocessor 0, which handles

exceptions and interrupts
jmp_op out JMP_OP_TYPE – Operation for jump unit
mem_op out MEM_OP_TYPE – Operation for memory unit
wb_op out WB_OP_TYPE – Operation for write-back stage
exc_dec out std_logic – Decoding exception

Table 16: Decode stage interface

16

Field Type Width Description

alu_op ALU_OP_TYPE – ALU operation
readdata1 std_logic_vector DATA_WIDTH Data from first register file read port
readdata2 std_logic_vector DATA_WIDTH Data from second register file read port
imm std_logic_vector DATA_WIDTH Immediate value from instruction
rs std_logic_vector REG_BITS Value of R-format field rs
rt std_logic_vector REG_BITS Value of R-format field rt
rd std_logic_vector REG_BITS Value of R-format field rd
useimm std_logic – Use immediate value (for ALU or jumps)
useamt std_logic – Use value of shamt field (for shifts only)
link std_logic – Result is (adjusted) value of program counter
branch std_logic – Branch relative to program counter
regdst std_logic – Destination register is in R-format field rt or rd
cop0 std_logic – Result is value from coprocessor 0
ovf std_logic – Pass on overflow signal from ALU

Table 17: EXEC_OP_TYPE fields

Field Type Width Description

wr std_logic – Write to coprocessor 0 register
addr std_logic_vector REG_BITS Coprocessor 0 register to read from or write to

Table 18: COP0_OP_TYPE fields

Field Type Description

memtoreg std_logic Use ALU or memory result
regwrite std_logic Write to register

Table 19: WB_OP_TYPE fields

31 26 25 21 20 16 15 11 10 6 5 0

R-format opcode rs rt rd shamt func

I-format opcode rs rd address/immediate

J-format opcode target address

Figure 2: Instruction formats

Theory

Explain why it is beneficial to have source registers in the same position for all instruction formats, and why
this is less of an issue for destination registers.

17

In Tables 20, 21, 22 and 23, apart from C syntax, the following symbols are used:

/0 Unsigned or zero-extended value
± Signed or sign-extended value
ra:b Bits a to b of register r
[a] Value at memory address a

Please also note that in the column labelled “Syntax”, imm18 denotes an 18-bit immediate value with
its lowest two bit clear, which enables storing this value in the 16-bit field of the instruction. These values
therefore have to be shifted by two bits before being used.

The value pc corresponds to the value of the program counter as it is passed on from the fetch stage, i.e., it
corresponds to the next program counter rather than the address of the currently executed instruction.

Opcode Format Syntax Semantics

000000 R – see Table 21
000001 I – see Table 22
000010 J J address pc = address /0<< 2

000011 J JAL address r31 = pc+4; pc = address /0<< 2
000100 I BEQ rd, rs, imm18 if (rs == rd) pc += imm±<< 2
000101 I BNE rd, rs, imm18 if (rs != rd) pc += imm±<< 2
000110 I BLEZ rs, imm18 if (rs±<= 0) pc += imm±<< 2
000111 I BGTZ rs, imm18 if (rs±> 0) pc += imm±<< 2
001000 I ADDI rd, rs, imm16 rd = rs + imm±, overflow trap
001001 I ADDIU rd, rs, imm16 rd = rs + imm±

001010 I SLTI rd, rs, imm16 rd = (rs±< imm±) ? 1 : 0

001011 I SLTIU rd, rs, imm16 rd = (rs /0< imm /0) ? 1 : 0

001100 I ANDI rd, rs, imm16 rd = rs & imm /0

001101 I ORI rd, rs, imm16 rd = rs | imm /0

001110 I XORI rd, rs, imm16 rd = rs ^ imm /0

001111 I LUI rd, imm16 rd = imm /0<< 16
010000 R – see Table 23
100000 I LB rd, imm16(rs) rd = (int8_t)[rs+imm±]
100001 I LH rd, imm16(rs) rd = (int16_t)[rs+imm±]
100011 I LW rd, imm16(rs) rd = (int32_t)[rs+imm±]
100100 I LBU rd, imm16(rs) rd = (uint8_t)[rs+imm±]
100101 I LHU rd, imm16(rs) rd = (uint16_t)[rs+imm±]
101000 I SB rd, imm16(rs) (int8_t)[rs+imm±] = rd7:0
101001 I SH rd, imm16(rs) (int16_t)[rs+imm±] = rd15:0
101011 I SW rd, imm16(rs) (int32_t)[rs+imm±] = rd

Table 20: MiMi instructions

18

Func Syntax Semantics

000000 SLL rd, rt, shamt rd = rt << shamt

000010 SRL rd, rt, shamt rd = rt /0>> shamt
000011 SRA rd, rt, shamt rd = rt±>> shamt
000100 SLLV rd, rt, rs rd = rt << rs4:0
000110 SRLV rd, rt, rs rd = rt /0>> rs4:0
000111 SRAV rd, rt, rs rd = rt±>> rs4:0
001000 JR rs pc = rs
001001 JALR rd, rs rd = pc+4; pc = rs
100000 ADD rd, rs, rt rd = rs + rt, overflow trap
100001 ADDU rd, rs, rt rd = rs + rt
100010 SUB rd, rs, rt rd = rs - rt, overflow trap
100011 SUBU rd, rs, rt rd = rs - rt
100100 AND rd, rs, rt rd = rs & rt
100101 OR rd, rs, rt rd = rs | rt
100110 XOR rd, rs, rt rd = rs ^ rt
100111 NOR rd, rs, rt rd = ~(rs | rt)
101010 SLT rd, rs, rt rd = (rs±< rt±) ? 1 : 0

101011 SLTU rd, rs, rt rd = (rs /0< rt /0) ? 1 : 0

Table 21: MiMi special instructions

rd Syntax Semantics

00000 BLTZ rs, imm18 if (rs±< 0) pc += imm±<< 2
00001 BGEZ rs, imm18 if (rs±>= 0) pc += imm±<< 2
10000 BLTZAL rs, imm18 r31 = pc+4; if (rs±< 0) pc += imm±<< 2
10001 BGEZAL rs, imm18 r31 = pc+4; if (rs±>= 0) pc += imm±<< 2

Table 22: MiMi regimm instructions

rs Syntax Semantics

00000 MFC0 rt, rd rt = rd, rd register in coprocessor 0
00100 MTC0 rt, rd rd = rt, rd register in coprocessor 0

Table 23: MiMi cop0 instructions

19

3.3. Execute

File exec.vhd

P
C

4

regfileimem

decode

m
u
lt
ip

le
x

A
L
U

jmpu

memu

ctrl

fwd

Description

The execute stage contains the ALU, and therefore “executes” the arithmetic and logic instructions. Further-
more, the ALU is used to compute the addresses for memory accesses. Also, the addition for branches relative
to the program counter is computed in this stage. Table 24 shows the interface of the execute stage.

The signals clk and reset have their usual meaning, reset is active low. Asserting stall causes the stage
not to latch inputs into its internal registers; asserting flush causes the unit to store no-ops to the pipeline
registers. The signal exc_ovf shall be asserted if the ALU asserts the overflow flag V and the current operation
may trigger an overflow trap.

The signals rs and rt shall be instruction fields rs and rt, respectively. The signal rd shall be the destination
register for the current operation, which may correspond to the field rd or rt, depending on the instruction
format.

For most instructions, the aluresult signal is the result from the ALU. For the mfc0 instruction, it shall hold
the result from coprocessor 0. For instructions such as jal or jalr, aluresult shall contain the (adjusted)
program counter. Please note that for the bltzal and bgtzal instructions, it is not possible to use the ALU to
both compute the condition and adjust the program counter. Either the zero and neg flags have to be computed
separately, or a separate adder to adjust the program counter has to be used.

Information in the signals suffixed _in and _out shall be passed on to subsequent pipeline stages without
being modified.

The signals forwardA, forwardB, mem_aluresult and wb_result are irrelevant for this assignment and
can be ignored. They will be used for forwarding the correct data to the ALU for the assignment in Section 4.

Theory

Explain why it is beneficial to multiplex the operands for a single adder over using several adders and multiplex
their results. Does the benefit concern rather the performance or the size of the resulting hardware?

20

Signal Dir. Type Width Description

clk in std_logic – Clock
reset in std_logic – Reset
stall in std_logic – Stall
flush in std_logic – Flush
op in EXEC_OP_TYPE – Operation for this stage
rd out std_logic_vector REG_BITS Value of instruction’s destination field
rs out std_logic_vector REG_BITS Value of instruction’s rs field
rt out std_logic_vector REG_BITS Value of instruction’s rt field
aluresult out std_logic_vector DATA_WIDTH Result from ALU or coprocessor 0, or

adjusted PC
wrdata out std_logic_vector DATA_WIDTH Value to be written to memory
zero out std_logic – Zero flag from ALU
neg out std_logic – Negative result from ALU
new_pc out std_logic_vector PC_WIDTH Target address for branches
pc_in in std_logic_vector PC_WIDTH Program counter from decode stage
pc_out out std_logic_vector PC_WIDTH Program counter to memory stage
memop_in in MEM_OP_TYPE – Memory operation from decode stage
memop_out out MEM_OP_TYPE – Memory operation to memory stage
jmpop_in in JMP_OP_TYPE – Jump operation from decode stage
jmpop_out out JMP_OP_TYPE – Jump operation to memory stage
wbop_in in WB_OP_TYPE – Write-back operation from decode stage
wbop_out out WB_OP_TYPE – Write-back operation to memory stage
forwardA in FWD_TYPE – Forwarding info for operand A
forwardB in FWD_TYPE – Forwarding info for operand B
cop0_rddata in std_logic_vector DATA_WIDTH Data from coprocessor 0
mem_aluresult in std_logic_vector DATA_WIDTH Result from ALU from previous cycle,

from memory stage
wb_result in std_logic_vector DATA_WIDTH Result from ALU two cycles ago or

from memory operation, from write-
back stage

exc_ovf out std_logic – Overflow exception

Table 24: Execute stage interface

21

3.4. Memory

File mem.vhd

P
C

4

regfileimem

decode

m
u
lt
ip

le
x

A
L
U

jmpu

memu

ctrl

fwd

Description

Despite its name, the memory stage does not only contain the memory unit, but also the jump unit. Most of its
functionality is already implemented in these two units. Therefore, the implementation for this stage mainly
consists of registering the inputs and passing them on to the memory and jump unit. The interface for this
stage is shown in Table 25.

The signals clk and reset have their usual meaning, reset is active low. Asserting flush causes the unit
to store no-ops to the pipeline registers. Asserting stall causes the stage not to latch inputs into its internal
registers; additionally, neither op.memread nor op.memwrite of the memory unit may be asserted while the
stall signal is asserted.

Information in the signals suffixed _in and _out shall be passed on to subsequent pipeline stages without
being modified. Other signals shall be connected to the appropriate ports of the jump and memory units.

22

Signal Dir. Type Width Description

clk in std_logic – Clock
reset in std_logic – Reset
stall in std_logic – Stall
flush in std_logic – Flush
mem_op in MEM_OP_TYPE – Memory operation from execute stage
jmp_op in JMP_OP_TYPE – Jump operation from execute stage
wrdata in std_logic_vector DATA_WIDTH Data to be written to memory
memresult out std_logic_vector DATA_WIDTH Result of memory load
zero in std_logic – Zero flag from ALU
neg in std_logic – Negative result from ALU
pcsrc out std_logic – Asserted if a jump is to be executed
new_pc_in in std_logic_vector PC_WIDTH Jump target from execute stage
new_pc_out out std_logic_vector PC_WIDTH Jump target to fetch stage
pc_in in std_logic_vector PC_WIDTH Program counter from execute stage
pc_out out std_logic_vector PC_WIDTH Program counter to write-back stage
rd_in in std_logic_vector REG_BITS Destination register from execute stage
rd_out out std_logic_vector REG_BITS Destination register to write-back stage
aluresult_in in std_logic_vector DATA_WIDTH Result from ALU from execute stage
aluresult_out out std_logic_vector DATA_WIDTH Result from ALU to write-back stage
wbop_in in WB_OP_TYPE – Write-back operation from execute

stage
wbop_out out WB_OP_TYPE – Write-back operation to write-back

stage
mem_out out MEM_OUT_TYPE – Memory operation to outside the

pipeline
mem_data in std_logic_vector DATA_WIDTH Memory load result from outside the

pipeline
exc_load out std_logic – Load exception
exc_store out std_logic – Store exception

Table 25: Memory stage interface

23

3.5. Write-Back

File wb.vhd

P
C

4

regfileimem

decode

m
u
lt
ip

le
x

A
L
U

jmpu

memu

ctrl

fwd

Description

The purpose of the write-back stage is to select between the result from the ALU and from memory loads and
to relax the critical paths in the pipeline. Table 26 shows its interface.

Signal Dir. Type Width Description

clk in std_logic – Clock
reset in std_logic – Reset
stall in std_logic – Stall
flush in std_logic – Flush
op in WB_OP_TYPE – Write-back operation from memory stage
aluresult in std_logic_vector DATA_WIDTH Result from ALU
memresult in std_logic_vector DATA_WIDTH Result from memory load
result out std_logic_vector DATA_WIDTH Result to register file
regwrite out std_logic – Write enable to register file
rd_in in std_logic_vector REG_BITS Destination register from memory stage
rd_out out std_logic_vector REG_BITS Destination register to register file

Table 26: Write-back stage interface

24

3.6. Pipeline

File pipeline.vhd

Description

The pipeline stages described above shall be connected to form a pipeline. The interface of the pipeline is
shown in Table 27. The clk and reset signals have their usual meaning, reset is active low. If the field busy
in the input signal mem_in is asserted, the pipeline shall be stalled. As the ctrl unit is not yet implemented, the
appropriate signals from the memory stage shall be passed on to the fetch stage without modifying them. As
the pipeline in its current state does not resolve any hazards, the flush signal of the individual pipeline stages
can be hardwired to ’0’. The signal intr can be ignored for this assignment, but will be used in Section 5 to
trigger external interrupts.

Signal Dir. Type Width Description

clk in std_logic – Clock
reset in std_logic – Reset
mem_in in MEM_IN_TYPE – Interface from memory to the pipeline
mem_out out MEM_OUT_TYPE – Interface from the pipeline to the memory
intr in std_logic_vector INTR_COUNT External interrupt lines

Table 27: Pipeline interface

The pipeline should now be able to execute sequences of assembly code. As hazards are not resolved, the
results from operations only become available two instructions later. Also, branches require a three-cycle
branch delay slot. The assembler code shown in Listing 1 shows an endless loop that stores the numbers 0, 1,
2, . . . to address 16. Note that after initializing or incrementing register $1 two nop operations are necessary
for correct operation.

Listing 1: Assembler example without forwarding
addi $1, $0, 0
nop
nop

loop:
addi $1, $1, 1
nop
nop
sw $1, 16($0)
j loop
nop
nop
nop

Theory

Listing 1 contains seven nop-instructions. How many of these instructions can be removed by reordering
instructions, without changing the semantics of the program?

25

4. Level 2: Hazards

In this assignment, the data and control hazards shall be resolved. The pipeline should be able to execute
compiler-generated MIPS code, as long as it does not contain instructions lacking from the MiMi implementa-
tion. You can test the processor by writing normal C programs and check whether they execute correctly.

Points 6

Evaluation

The correctness of the design will be assessed with test benches, which check the correct behavior of the
pipeline for given instruction memory contents. Furthermore, the design will be checked by the tutors with test
programs, to ensure that the design can be correctly synthesized and runs at a frequency of at least 50 MHz.
Points will be awarded if the design passes the test suites and operates correctly in hardware. The assignment
is part of lab exercise V.

26

4.1. Forwarding

File fwd.vhd

P
C

4

regfileimem

decode

m
u
lt
ip

le
x

A
L
U

jmpu

memu

ctrl

fwd

Description

When executing the sequence of instructions in Listing 2, the and instruction uses the results of the two
preceding instructions. However, these results are not available from the register file when the and reaches the
execute stage. The value of register $1 is still in the write-back stage, while the value of register $2 is in the
memory stage. For correct operation, these values must be forwarded to the execute stage. While forwarding
increases the complexity of a pipeline, it is usually more efficient to resolve this hazard in hardware than by
having the compiler reorder code and insert nop instructions where necessary.

Write a forwarding unit that compares information from the execute stage, the memory stage, and the
write-back stage and decides whether forwarding is necessary. It shall return two signals forwardA and
forwardB, which are of type FWD_TYPE and may have the values FWD_NONE, FWD_ALU or FWD_WB. FWD_ALU
signifies that the result from the ALU that is currently stored in the memory stage shall be forwarded, FWB_WB
signifies that the result from the write-back stage shall be forwarded. Extend the execute stage to make use
of forwardA and forwardB and forward the appropriate value to the ALU. When operating correctly, the
assembly code in Listing 2 must store the value 5 in register $1.

Listing 2: Assembler example with forwarding
addi $1, $0, 7
addi $2, $0, 5
and $1, $2, $1
nop
nop

Note that it would not be possible to forward the result from a memory load to an instruction executed
immediately after the load. While some MIPS incarnations stall the pipeline in such situations, MiMi, just
as the original MIPS implementation, requires the compiler to avoid such situations. If rescheduling the
instructions appropriately is not possible, the compiler must insert a nop. The instruction immediately after a
load, where the result is not yet available is called load delay slot.

Theory

Explain why forwarding to an instruction immediately after a memory load is infeasible. Where would the
critical path be if one would try to forward the result of a memory load to the ALU?

27

4.2. Branch Hazards

File ctrl.vhd

P
C

4

regfileimem

decode

m
u
lt
ip

le
x

A
L
U

jmpu

memu

ctrl

fwd

Description

When performing a branch in the memory stage, the fetch, decode and execute branch already hold instructions
that follow the branch. In order to reduce the performance costs of branches, the MIPS ISA defines that the
instruction immediately after the branch is executed, independent from whether the branch is taken or not.
In the case of the pipeline described so far, this means that the instruction in the execution stage may finish
execution, but the instructions in the fetch and decode stages need to be flushed. Implement a control unit
that flushes the appropriate pipeline stages when branching.1 When operating correctly, the assembly code in
Listing 3 must increment register $1, but not register $2.

Listing 3: Assembler example with branch delay slot
loop: j loop

addi $1, $1, 1
addi $2, $2, 1
nop

Theory

A branch delay slot is a means to keep the hardware simple while reducing the cost of branches, but may
increase the code size. How much is the code size increased with one-cycle branch delay slots, if 15% of
the instructions are branches, and 30% of the branch delay slots can be filled by the compiler with useful
instructions?

1The flush signals for some pipeline stages may not be necessary for this assignment, but will be so for the implementation of Level 3.

28

4.3. Integration

The processor is now almost ready to be tested in hardware. What is still missing are I/O modules in order
to communicate with the outside world. The entity provided in file mimi.vhd wraps the processor core. It
synchronizes external reset and interrupt signals and includes a PLL to adjust the external clock frequency
appropriately. The entity core integrates the pipeline, on-chip data memory and a serial port. Use the serial
port module you developed in lab exercise III for the implementation of the serial port. Synthesize the processor
and test it in hardware.

The timing analysis for your design must yield a maximum frequency fmax of at least 50 MHz. A lower
fmax hints at serious flaws in your design, such as not being properly pipelined. Adapt the default frequency
of 75 MHz to fit your needs in mimi.vhd. Make sure that the entity core uses the generics clk_freq and
baud_rate for the instantiation of the serial port. Your design will fail the automated test benches if it specifies
the clock frequency or baud rate by any other means.

You are welcome to integrate I/O devices from previous assignments when synthesizing the processor.
However, for the test benches, the interface of the core entity must not include any additional ports.

29

5. Level 3: Exceptions and Interrupts

In Section 4.2, the ctrl unit has been implemented to correctly handle branch hazards. This unit shall now
be extended to implement the coprocessor 0, which handles exceptions and interrupts. An exception is a
synchronous transfer of control that is triggered from within the pipeline, e.g., when trying to decode an
unimplemented instruction. An interrupt is an asynchronous transfer of control that is triggered from outside
the pipeline, e.g., when pressing a button. When resuming execution, there are in principle two possibilities:
either the processor resumes at the instruction that was interrupted, or immediately after that instruction. The
former alternative is mandatory for interrupts, where the execution must continue as if the interrupt had not
happened. The latter alternative is useful when the instruction that caused the exception can be emulated by an
exception handler.

Points 8

Evaluation

You are assigned two of the sub-assignments described in Sections 5.3, 5.4, 5.5 or 5.6. The mapping between
your group number and the assignments is shown in Table 28. You can receive up to 4 points for each
sub-assignment, i.e., at most 8 points in total. Solving this assignment is optional, but provides the opportunity
to receive bonus points and improve your grade.

The correctness of the design will be assessed with test benches, which check the correct behavior of the
pipeline for given instruction memory contents. Furthermore, the design will be checked by the tutors with test
programs, to ensure that the design can be correctly synthesized and runs at a frequency of at least 50 MHz.
Points will be awarded if the design passes the test suites and operates correctly in hardware. The assignment
is part of lab exercise V.

Group Assignment 1 Assignment 2

1 5.3 5.4
2 5.4 5.5
3 5.5 5.6
5 5.6 5.3
6 5.3 5.5
7 5.4 5.6
8 5.5 5.3
9 5.6 5.4

10 5.3 5.6
11 5.4 5.3

Table 28: Level 3 Assignments

30

5.1. Coprocessor 0

In order to interface the coprocessor 0, the instructions shown in Table 23 shall be implemented. The registers
that shall be supported and their addresses are shown in Table 29. Note that the execution stage already
contains an input port from the coprocessor 0, which can be used to move data from the coprocessor registers
to the normal registers.

Splitting the epc and npc register is necessary, because exceptions may occur within a branch delay slot.
Then, it would not be possible to determine whether the branch was actually taken or not, e.g. whether the next
instruction is from the next higher address or the branch target. This computation has to be done within the
pipeline and provided to the software via the npc register.

The cause register is described in detail in Figure 3. The bit labelled B shall be set to ’1’ if the exception or
interrupt occurred in a branch delay slot and set to ’0’ otherwise. The field labelled pen represents the pending
interrupts, with bit n in that field set if interrupt n is pending. The field exc holds the cause of the exception or
interrupt. Table 30 details the exception codes to be used for that field.

The status register is shown in Figure 4. The flag labelled I is the interrupt enable flag. Note that in the
original MIPS specification, the status register provides support for masking interrupts and the distinction of
kernel- and user-mode interrupts. For the sake of simplicity, this register is reduced to a single interrupt enable
flag in MiMi. The interrupts enable flag enables/disables only interrupts; exceptions may be raised even if that
bit is cleared.

Address Register Description

01100 status Status register
01101 cause Cause of the exception or interrupt
01110 epc Program counter of the instruction that caused the exception or was interrupted
01111 npc Program counter of the next instruction

Table 29: Coprocessor 0 registers

31 30 13 12 10 9 6 5 2 0

B pen exc

Figure 3: cause register

Value Exception

0000 Interrupt
0100 Load exception
0101 Store exception
1010 Decoding exception
1100 Overflow exception

Table 30: Exception codes

31 1 0

I

Figure 4: status register

31

5.2. General Operation

In case of an exception or interrupt, execution shall proceed at address EXCEPTION_PC. The exception handler
located at this address saves the processor state and calls an exception handling routine. Depending on the
return value of this routine, execution resumes at the interrupted instruction or the instruction to be executed
after that instruction. In the latter case, this is the instruction at the address stored in the npc register. In
the former case, the return address depends on the bit “B” in the cause register. If it is set (i.e., if the
exception/interrupt was triggered in a branch delay slot), execution resumes at epc-4; otherwise, execution
resumes at address epc.

5.3. Decode Exception

The decode exception shall be triggered if the decode stage detects an unimplemented instruction, and the
respective instruction would be actually executed. The exception should therefore be suppressed if a branch is
taken and the respective instruction would be flushed from the pipeline. Furthermore, if the invalid instruction
is in a branch delay slot, triggering of the exception must be delayed until the correct value for the npc register
becomes available.

5.4. Overflow Exception

If the ALU signals an overflow for an ADDI, ADD, or SUB instruction, an overflow exception shall be
triggered. A combinatorial path from the adder/subtracter in the ALU to the fetch stage would result in a
long critical path. Inserting registers can cut this critical path and help in achieving a reasonable maximum
frequency of the overall design.

5.5. Memory Exception

A memory exception shall be triggered if the memory stage asserts the exc_load or exc_store signal. If the
exception is triggered in a branch delay slot, the branch already has been executed in the previous cycle. The
coprocessor therefore has to “remember” if a branch has occurred in order to compute the correct value of the
npc register.

5.6. Interrupts

An interrupt shall be triggered if an external interrupt signal is asserted and bit 0 of the status register is
set. Upon triggering an interrupt, this bit shall be cleared. As the interrupted instruction must always be
re-executed, both the npc and epc register shall point to this instruction.

Whenever a bit in the input intr of the pipeline is ’1’, the corresponding bit in the field pen of the cause
register shall be set to ’1’. This pending flag must remain ’1’ until overwritten by a write to the cause register.
An interrupt is triggered if any bit in the field pen is set and the interrupt enable flag in the status register is
’1’. It is acceptable to delay interrupts to avoid conflicts with branches.

32

A. Tools

Listing 4 shows a basic Makefile to compile programs for MiMi in the lab environment. The variable CC
denotes the C compiler, LD the linker, AR the program to create library files and OBJCOPY the program to
convert between binary representations of a program. The default flags for the compiler indicate that MiMi is
compatible to the MIPS 1 ISA and that it does not contain a floating-point unit. The flags for LD determine the
memory layout and must not be changed.

The target lib builds the program preamble crt0.o and a minimal version of the C library, libc.a. This
target must be built explicitly before building programs. Note that it is necessary to provide an explicit rule for
linking in order to link the right files (the libc.a in the current directory) in the right order (crt0.o before
everything else).

The build process for MiMi is slightly more complex than for more common architectures. After having
linked the program in the ELF file format, the binary needs further processing. First, the data for the instruction
and data memories have to be extracted to files which end in .imem.hex and .dmem.hex, respectively. Then,
these files have to be converted from the Intel HEX format to the MIF file format understood by Quartus,
which is done with the hex2mif.pl script. The .mif files then need to be copied to the appropriate directory
such that the correct program is synthesized into the processor.

Listing 4: Makefile fragment
PREFIX=/usr/mips

CC=${PREFIX}/bin/mips-elf-gcc -mips1 -msoft-float
LD=${PREFIX}/bin/mips-elf-ld -N -Ttext=0x40000000 --section-start .rodata=4
AR=${PREFIX}/bin/mips-elf-ar
OBJCOPY=${PREFIX}/bin/mips-elf-objcopy

CFLAGS=-O2 -DARCH_IS_BIG_ENDIAN=1

test.elf: test.o
${LD} -o $@ crt0.o $^ -L. -lc

lib: crt0.o libc.a

libc.a: exceptions.o util.o
${AR} rc $@ $^

%.imem.hex : %.elf
${OBJCOPY} -j .text -O ihex $< $@

%.dmem.hex : %.elf
${OBJCOPY} -R .text -O ihex $< $@

%.mif : %.hex
./hex2mif.pl < $< > $@

33

B. Automated Test Environment

In order to submit your source code to the automated test system, copy your design to the directory
/ddcanightly/ddcagrp<grpnr>/level<lvlnr>/. The VHDL files should reside in the subdirectory src.
For example, group 99 should copy their implementation of the decode stage to /ddcanightly/ddcagrp99/le-
vel1/src/decode.vhd to submit it to the level 1 tests.

The source code for each level must be complete; higher levels must include the source code from lower
levels. The files imem_altera.vhd, ocram_altera.vhd and serial_port_wrapper.vhd must be identical
to the provided files. Only the files that were provided to you are taken into account by the test suite. Your
design will therefore not pass the test benches if it requires any additional source files.

The automated test benches create a snapshot of the /ddcanightly directory daily at 1:00 AM; please do
not submit files around that time to avoid an inconsistent state of your source code. The test bench results are
reported to the e-mail addresses stated in /ddcanightly/ddcagrp<grpnr>/recipients. You will receive
the reports only if you enter your e-mail address in that file.

The test system is not intended to replace your own testing. In order to avoid abuse of the test system for
debugging, the test reports provide only minimal information on the failed test cases. For test cases that are
based on assembler or C code, you will however be provided with the source code.

In order to receive points for the exercises, the source code must be uploaded to the MyTI system before the
deadline. Points will only be awarded if the source code submitted to the MyTI system passes the test suites.

C. Submission Requirements

C.1. Exercise IV

The results have to be submitted via MyTI. The deadline is December 20th, 2013, 23:59. Upload a zip or
tar.gz archive containing the following items:

• Your lab protocol as PDF file.

• The complete VHDL source code for the assignments detailed in Section 2 and 3, including entities and
packages provided to you.

Source code must extract to a directory named src. It is permissible to place the source code for Level 0 in
a directory level0/src and the source code for Level 1 in a directory level1/src.

C.2. Exercise V

The results have to be submitted via MyTI. The deadline is January 23rd, 2014, 23:59. Upload a zip or tar.gz
archive containing the following items:

• Your lab protocol as PDF file.

• The complete VHDL source code and the Quartus project for the assignments detailed in Section 4 and
5, including entities and packages provided to you.

Source code must extract to a directory named src. It is permissible to place the source code for Level 2 in
a directory level2/src and the source code for Level 3 in a directory level3/src.

34

Acknowledgements

This document was written by Wolfgang Puffitsch. Other people, who have helped in improving it: Jomy
Joseph Chelackal, Florian Ferdinand Huemer, Thomas Preindl, Jörg Rohringer, Markus Schütz and others.

References

[1] John L. Hennessy and David A. Patterson. Computer Architecture, Fourth Edition: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2006.

[2] David A. Patterson and John L. Hennessy. Computer Organization and Design, Fourth Edition, Fourth
Edition: The Hardware/Software Interface (The Morgan Kaufmann Series in Computer Architecture and
Design). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 4th edition, 2008.

Revision Log

• 2011-11-29: First public version.

• 2011-12-07: Minimum fmax requirement, clk_freq and baud_rate generics.
Group assignments for level 3.
Fix typos.

• 2011-12-13: Definite version of Levels 2 and 3.

• 2011-12-16: Updated points, Level 3 is now optional.

• 2011-12-19: Clarifications for value of program counter from fetch unit.
Fix description of branches.
Explain why almost all stages have a flush signal.

• 2012-01-09: Fix description of mfc0 and mtc0.

• 2012-01-13: Clarify description of pending flags and interrupts.

35

